N95- 14161

N . ~ 5 W/
. SAFETY CRITICAL 37226
SYSTEMS - A

@l G !

RESEARCH & APPLICATIONS A1

31

SYMPOSIUM ‘92

A GENERIC ARCHITECTURE MODEL FOR SPACE DATA SYSTEMS

RICHARD B. WRAY
ABSTRACT

A Space Generic Open Avionics Architecture (SGOAA) was created for the NASA, to be the basis for
an open, standard generic architecture for the entities in spacecraft core avionics. Its purpose is to be
tailored by NASA to future space program avionics ranging from small vehicles such as Moon Ascent/
Descent Vehicles to large vehicles such as Mars Transfer Vehicles or Orbiting Stations. This architec-
ture standard consists of several parts: (1) a system architecture, (2) a generic processing hardware
architecture, (3) a six class architecture interface model, (4) a system services functional subsystem
architecture model, and (5) an operations control functional subsystem architecture model.

This paper describes the SGOAA model. It includes the definition of the key architecture require-
ments; the use of standards in designing the architecture; examples of other architecture standards;
identification of the SGOAA model; the relationships between the SGOAA, POSIX and OSI models;
and the generic system architecture. Then the six classes of the architecture interface model are
summarized. Plans for the architecture are reviewed.

BIOGRAPHY

Richard B. Wray has a dual MS/MBA in Systems Management, Acquisition, and Contracting; a MBA
with Distinction Honors in General Management; a MS in Systems Engineering and a BS in Math-
ematics. He is the Vice President-Technical of the National Council on Systems Engineering
(NCoSE) Texas Gulf Coast Chapter, and Chairman of the NCoSE Systems Engineering Process
Working Group to define a nationally recognized systems engineering process.

Mr. Wray has been with Lockheed Corporation for over eight years as an Advanced Systems Engineer
responsible for developing and implementing plans, performing systems engineering and analysis, and
implementing systems. He is leading the definition of a Space Generic Avionics architecture and
simulation using advanced computer aided systems engineering (CASE) Tools. Prior to this, he
performed and led analyses of system operational concepts, functional and performance requirements,
hardware/software trade-offs and system timelines for advanced avionics systems and architectures.
Mr. Wray was the lead software systems engineer for the definition and development of a software
system architecture, software analyses and the DoD-STD-2167A specifications for an avionics
subsystem and its interfaces to other avionics on the Advanced Tactical Fighter.

‘. ™

~——— -
J n;nnr ATA SYSTOMS ORPARTMDNT Lockheed

Overview
SPACE GENERIC OPEN AVIONICS
ARCHITECTURE
(SGOAA)

for the Mission and Safety Critical Systems
Symposium

28 October 1992

Dick Wray
John Stovall j
N .

Notes:

® What we are trying to do

® What is an architecture reference model

® Whatis the Space Generic Open Avionics
Architecture (SGOAA) Model

® Summary

Acknowledgements

The architecture presented here was developed by David Pruett of
NASA’s Johnson Space Center, Dick Wray and John Stovall of the
Lockheed Engineering and Sciences Company (LESC). Additional
support was provided by Ben Doeckel of LESC.

GOAL: TO CREATE AN ARCHITECTURE BLUEPRINT
FOR TAILORING TO NEW PROGRAMS

/ - What Are We Trying to Do? \

® Objectives for developing an Architecture Refersnce Model:
O Provide an advanced architecture model as a refersnce for
starting systoms design

O Use standards for architecture; applying interface standards s
implementation specific based on mission requirements

O Provide generic, atomic data system functions for reusing
software and hardware technology In data system design

® Resuits to date:
O Generic System Architecture with explicitly identified functional
blocks and Interfaces

O Generic Functional Architecture with explicitly identified
generic, atomic functions for Space Data System software

O Architecture Interface Model with concept and expiicitly defined
interface class structure

O Potential mndlrdo' identifled for use with the architecture

- y

Notes:

What i Architecture Ref Model?

® Architecture

O A set of black boxes, interfaces between the black boxes and
interfaces from them to the external environment

O All functions and performance defined at the interfaces between the
black boxes

| @) Software “black boxes” as well as hardware black boxes
® Physical Interfaces

o Interfaces identified with physical connectivity between black boxes
" (hardware and software)

O Interfaces handle signal and data flow between the black boxes

o Logical Interfaces

O Interfaces identified with the meaning of data passed between two
black boxes where one is the originator and one is the user of the data

O Information exchange can cross many physical interfaces for one
logical interface, and thersfore cannot be identified with any one
physical interface

/ What is the Generic \
System Architecture Model ?

FLIGHT OATA SYSTEMS DEPAATAENT Lockheed

CORE NETWORK(s)

Data Sysl't;m :
Software

P SRS
Embedded :
Hardware :

AN
]
Sensors EEZ
Ef

m——
LOCAL COMMUNICATIONS
Otaks Wrop-4, 102008

Notes:

@ The generic and open system architecture proposed consists of
processors which are standard, processors which can be tailored to
users applications and missions needs, multiple communications
mechanisms, and specialized hardware operating over
standardized interfaces to the processors which manipulate the
data they receive or provide.

@ There are three types of processors interconnected by two types of
communications. The processors provided in the architecture are
the General Avionics Processor (GAP) for general purpose
processing, the Special Avionics Processor (SAP) for specialized
processing support, the Embedded Processor (EP) for the execution
of high speed processing witin the sensor and effector devices.

® The communications provided are two types: core networks for
interconnecting sets of general processors or nodes, and local
communications for interconnecting EPs and SAPs with their
supported GAPs and general purpose processing applications.

® There are sensors and effectors which can either interact directly
with the main processors (the GAPs) or indirectly through the EPs
built into the sensors and effectors (if applicable).

/ Architecture Interface Model \
-k i Classes Lockrend

1 Hardware-to-Hardware Physical

® Hardwars Physicst interfuces - Dirsct Bus Connections, Memory Chip Struciure
2 Hardware-to-System Softwars Physical

® Hardwate Registers To Soltware Service Drivers - Physical interfaves
3 System Software-to-Software (Local) Physical

* Operating Syxtem to othar Locai Code - Physical interfeces between Service fcde
4 System Software-to-System Software Logical

> Syatem Sarvicas 16 QUier Services - Logicat Dats Trunutars from Source ¢ Usar Service
5§ System Software-to-Applications Software Physical

® Syslom Services to Local Applications - Physical Interfaces between Code Sts
6 Applications Software-to-Applications Software Logical

® Between Softwars Applications - Logical Daia Transfers from Sourcs to User

Belwoen Sysiems .- Logical interfaces for Ovarall Command And Control

{Mission Operationd Layer)

S o

Notes:

The architecture interface model focuses on logical and physical interfaces to isolate and enable
specifications of effective interfaces. Logical interfaces are those connecting elements which
provide information with those needing it; these are "ought to" type interfaces not real interfaces.
So hardware logical does not exist because either it connects or it does not, no "ought to" is
involved. This progression from hardware to system logical interfaces moves from the things
people can touch and feel to the conceptuallogical. Software physical interfaces are those
interfaces between two sets of software code,e.g., one code package calling another.

Class 1, Hardware-to-Hardware Interfaces (Physical), addresses hardware component modularity
and portability, and maintainability and technology upgradability of platform hardware over
extended space avionics life cycles. These hardware interface standards must be definitive as to
the software driver interface requirements needed to communicate with that hardware.

Class 2, Hardware-to-System Software Interface (Physical), is the Operating System (0S) hardware
driver software to invoke platform services internal to the Application Platform. Each of these
standards must specify the software interface binding requirements for "plugging” a driver into the
0S.

Class 3, System Software-to-Software (Local Physical), is provides access form the operating system
to all other platform services and applications in support of application portability.

Class 4, System Software-to-System Software Interfaces (Logical), is the internal interface for
transfer of data between Application Platform Data System Services. For example, this is the
logical interface between the Data Base Manager in an Application Platform communicating with
the Data Base Manager in another platform.

Class 5, System Software-to-Application Software Interfaces (Physical), is defined primarily to
support Application Software portability.

Class 6, Application Software-to-Application Software (Logical), consists of application-to-
application software interfaces for both local/node and other systems. Applications software
interfaces are the internal interfaces for transfer of data between Application Software within an
Application Platform. These are also the external logical interfaces between Application Software
on the Application Platform with Application Software on other Application Platforms.

4

/ Hardware-to-Hardware \

-k Physical Interfaces

AKIMT QATA SYSTOMS QEPARTMENT

SPECIAL GENERAL
EMBEDOED AVIONICS AVIONICS
PROCESSOR PROCESSOR PROCESSOR

LOCAL COMMUNICATIONS

@ = Intertace Standard

@ Plugs Identify interface Standard Constraints

\ @ GAP based on Internal interface Standard Constraints /
D Wera, 1

Notes:

® The hardware to hardware physical interfaces are shown in this slide. These interfaces consists
of the nuts, and bolts, chips and wires of the hardware architecture described previously. With
regard to the model, it consists of all the hardware to hardware interfaces within each processing
element, as well as the hardware interfaces to the external environment by way of the core
network, local communications or direct interfaces. The focus in this standard is on GAPs which
provide the greatest flexibility in configuring the system to accomplish different purposes in
avionics. The GAP includes hardware components to interface to a core network, to interface to
local buses, to process applications, and optional components for other purposes (such as serial
input and output to direct analog and discrete links). As implied by the darker shading on the
GAP, the GAP is the focus of efforts to standardize the hardware processor support due to its
general purpose nature. An example of such hardware interfaces is shown below.

Core Network

Noetwork Interface

Chasslis

Backplane Interface

Board Intarface

Hardware-to-System Software
[wg____Physical interfaces \

DEPARTMENT Lockheed

Class 2. Application Platform Hardware to Service Drivers

—]{ootents)
Y
GAP

Disk Wrop-4 103088 Roviend: SYINE /

Notes:

® The hardware to system software interfaces are shown in this slide. These consist of the interfaces
from the system software drivers (i.e. in the OS, data system manager, etc.) to the hardware
instruction set architecture (ISA) and register usage. With regard to the model it is internal to each '«
processing element. The grayed out elements are a repeat of the previous figure; the white elements
represent the new capabilities and interfaces added by this class. This class provides low level
software drivers to interact with the hardware for each of the processor types (EPs, SAPs, and GAPs).
The drivers are (obviously) hardware dependent, but this enables the architecture to begin to partition
out the hardware dependencies, which is a key in providing for technology upgradability in the future.
All the drivers for all processor types are contained in the Space Data System Services (SDSS) sub-
architecture.

® The system services software for the GAP are organized into five categories. These categories are the
Data System Manager, Data Base Manager, Standard Data Services Manager, Operating System, and
Network Services Manager. Note the naming convention used for the GAP hardware to the OS
drivers, i.e., GAP-DRVR. This single link will be broken open in the next figure to show its component
elements. An example (drawn from the Space Station Freedom) of software driver interfaces is shown
below. :

O 8 /A da RTE

C lans 2
H ardw are 6

16/5/11 '0L-Amim %210

SJ9AlQ
eJeu9u|
soiydesn
JOOPIA

S19ALQ
eJepIAU)
on

810ALQ
edepeu|
Aowen

S19ALQ
eJBps)U|
NIOMION

sioAuQ
eoep9U|
sng

eo8poU|
jeusayu)

pieog
10S59901d

INTWIHVEIO SWALSAS YIVQ IHOITA

aoe9lu| |esisAud -
Vms:w.,‘Ec...u, 0] Em;_w:m_._ Jo ajdwiex3

PaaY07

System Software-to-Software
/ ‘?_Mn(,l,:?ﬁf.,') Physical Interfaces .

Notes:

® The system software drivers to local system software service interfaces are shown in next. These consist
of the Input/Output handler calling conventions and context switch conversions between the system
software drivers on one processing element interfacing with one or more system software services to L
provide for local information exchange. The grayed out parts of the figure represent the material
covered in Classes 1 and 2, the white parts of the figure are the new material added in Class 3. Since
Class 2 provided the software drivers to isolate the hardware, Class 3 provides the remainder of the local
software services needed to operate the computer system. They all fall into the Space Data System
Services (SDSS) sub-architecture, consisting of the Data System Manager, Data Base Manager,
Standard Data Services Manager, Operating System, and Network Services Manager. Class 3 provides
all remaining services and the interfaces between the local services for effective local interprocess
communications and support. These interfaces are physical interfaces because they enable software
service code to interact with software service code in other local entities. Class 3 interfaces meet derived
requirements based on the need of an application to support users.

® The naming convention (e.g., 0S-SW) is shown in this figure to indicate all the OS links both down to OS
drivers and up to other high level processes will be identified explicitly by their names. An example
from the Space Station Freedom project is shown below of these interfaces.

Application S oftw are

Classe 3

O S$/Adas RTE

=

System Software-to-Applications

Software Physical Interfaces

\

DATA SYSTEMS DEPARTVENT Lockheed
Elec Powe CaT Space
ELS Control e Operations Crew
Subsys ye Control ot a
Subers A

Payload GNC
Control GAP-Based Appiicstions Software Control
Subsys Subs

QAPSRY-APP
arfeses

LACAL SOVSLRCANC S

Notes:

® The system software services to applications software interfaces are shown here. This is the physical
interface within a processing element between the application software and the system software
(language bindings/specification) to allow provision of needed services. The grayed out parts of the
figure represent the material covered in Classes 1 to 4, the white parts of the figure are the new
material added in Class 5. Since Classes 1 to 4 isolated the hardware and software services in all the
processors, Class 5 adds the interface capability for services in any processor to interact with an
application executing in the processor; this provides the basic multi-processor capability to meet actual
user requirements in processing. Applications can operate in any GAP, with potential partitioning of
an application across multiple GAPs. Similarly, applications can operate in any SAP or any EP. These
interfaces are physical interfaces because the applications software code is interacting with the service
software code. Class 5 interfaces meet derived requirements based on the need of an application to
support users in a multi-processing environment.

® The naming conventions identify the higher level interfaces which will be specified in more detail in
lower level diagrams. An example of these interfaces from Space Station Freedom is shown below.

Application Softw are

Class §

System Software-to-System Software
Logical Interfaces \

FUGHT DATA SYSTEMS DEPARTMENT

Lockheed

2

oo/

[E

/3

LOCAL COMSUMLATY M8

CONR NYTWORL

@ Lateral Interfaces between Service Using Data and Service Generating Data

@ No Logical Architectural Ditference between Local and Remote Services Access

® Meets Requirements for Applications Support - A Derived Requirement

Diokt Wrap-4, {U30AR Roviend: VDR /

Notes:

® The system software services to remote system software interfaces are shown in this slide. This is the
peer to peer interface of system software in one processing element (GAP,SAP or EP) interfacing with
the system software in an external processing element to coordinate operations in a distributed ~~
environment. The grayed out parts of the figure represent the material covered in Classes 1 to 3, the
white parts of the figure are the new material added in Class 4. Since Classes 1 to 3 isolated the
hardware and software services in each processor, Class 4 adds the interface capability for services in
one processor to interact with services in another processor; this is the heart of multi-processor
capability needed in modern space avionics systems. GAP services can interact with EP and SAP
services and other GAP services. These interfaces are logical interfaces because the service originating
data is interacting with the service that will use the data (i.e., that will transform the data into another
form for a purpose). Class 4 interfaces meet derived requirements based on the need of an application
to support users in a multi-processing environment.

® The GAP to services interfaces are defined by the naming convention as GAPSRV- to indicate that GAP
services would be specified by the standard interface specification, and could be broken out by
subsequent lower level charts. An example from the station is shown below.

L lasa 4

e

/ Applications Software-to-Applications

v Software Logical Interfaces

ALGHT BATA SYSTEME OEPAATMENT me
—g Pow Coc:Ju Operstions
— Rt b
=)\ e e, T

SERVICES §

HARD
WARE

® No ldentified Standards for Interfaces between User and Source
@ Moeets System User Requirements Directly

® Can Apply to System/Vehicie Interfaces and Provide overall
Command & Operational Control

Chat Weep-76, ODONE Ruvtaad

Notes:

The applications software to applications software interfaces are shown. This peer to peer information
exchange and coordination interface between application software modules. Applications do not
communicate directly; hence this is a logical interface. All communication is through a Class 5 (P)
standard interface to System Services which provides the physical communications path between
applications. This interface may be between applications within a processing element or between
applications in separate processing elements. The grayed out parts of the figure represent the material
covered in Classes 1 to 5, the white parts of the figure are the new material added in Class 6. Since
Classes 1 to 5 isolated the hardware, software services and applications in any processor, Class 6 adds the
interface capability for an application in any processor to interact with another application executing in
any processor; this provides the basic multi-processor capability to meet multiple actual user
requirements in processing. Applications can operate in any processor (i.e., GAP, SAP or EP), with
cooperating interactions to support the needs of the users. The interfaces are logical interfaces because
the application originating data is interacting with applications that will use the data (i.e., that will
transform the data into a form useful to the user or to another application for a user's ultimate purpose).
Class 6 interfaces meet user and derived requirements based on the need of multiple applications to
support users in a multi-processing environment. The example below is provided from the station.

Class §

GNS&C g

Softw are e cC&T Softw are

s B

Current Status and Plans

w RANT GATA SVSTDME OEPARTMENT Lockheed

@ Review by SATWG and others:
O Review by Space Avionics Architecture Panel
O Planned for presentation to other forums
® Published in AFCEA's Signal Magazine (September)
Mission and Safety Critical System Symposium (October 28)
SIMTEC invitation (November 4)
SATWG and SAAP Software Workshop (November 18)
B SAE invitation (November)
® Enhancements in the works:
O FDIR/RM requirements to be incorporated
® Applied to projects:
O Used In Artemis Common Lunar Lander space data system
O Beginning to bulld Statemate dynamic model (simulation)
O Beginning point for institutional analysis and design of

\ flight data systems /

mm.g

Notes:

The Reference Architecture Model Must Be Based on Standards ~
It Must Span Platforms for All Missions and Operational Requirements

A Space Generic Open Avionics Architecture Must be Adaptable

Avionics Control Structure Must be Integrated in an Architecture

Support Tailoring to Multiple Missions

The advanced avionics architectures must fit and extend the POSIX Open Systems
Environment model

The space generic avionics functional architecture was successfully applied to the
Common Lunar Lander, with a preliminary design for the data system in 2 days

The architecture interface model makes an explicit and rational model of how
hardware and software interfaces should be defined

A common advanced architecture for all future space platforms is feasible and
achievable

11A'

/

ﬂ RIGHT DATA SYSTOMS OEMATMENT

k”ll AL

Addenda

Lockheed

Notes:

PRIBOEDING PAGE BLANK NOT FRLMED

13

Notes:

- Examples of Architecture
‘i? Reference Models

T
RGHT DATA SYSTEME DEPANTMENT

Lockheed

® International Standards Organization (ISO) Open Systems
Interconnect (OS!) 7 Layer Reference Model

® National Institure of Standards and Technology (NIST) Portable
Operating System (POSIX) Open Systems Environment (OSE)
Reference Model

® Proposed Space Generic Open Avionics Architecture (SGOAA)

The objective of a refersnce model Is to identity
INTERFACES
between
FUNCTIONAL BLOCKS
so that existing and future
STANDARDS
can be applied at the
INTERFACES
in a systematic way to meet mission requirements

TR TR fo e TR PR

Relationships between

al FUGHT DATA SYSTEMS OEPARTMENT Lockheed
) Open Systems interconnect
POSIX Open System Environment Model {QS1)Mode| Protocol Layers
App hlruu Ext
ATIO O AR =7, Appileation -
B §. Presentation -0
User Comm Info syg
APPLICATION y <= 4. Session -
PROGRAM -— 4. Transport -
INTERFACE - 3. Notwerk -
«—1. Data Link -
Q A SORM 1. Phydieal -
User Comm |
EXTERNAL
ENVIRONMENT (SGOAA) interface Model Classes
INTERFACE
8 Applications Software-to-Appiications Scftware Logical
" § Sysiem Softwareio-Appiloations Software Physicel
4 Sysiem Softwereio-System Software Logical
3 Sysiem Softwere-to-Sofwere (Local) Physicel
2 Herdware-l0-8y Pty
14 to4 Prwy 4
\ Déok Wroy-14, 102000 Aevised: VIO j

Notes:

® The POSIX Open System Environment (OSE) Reference Model is the basis for the generic and open
avionics architecture models, and for application software portability and interoperability. It can be
related to the Open System Interconnect (OSI) model and the SGOAA interface model as shown in
this slide. The OSE model communications link protocols are defined in detail by the OSI model for
peer-to-peer communications. The OSE model interface classes are defined in detail by the
SGOAA.

® The OSE Reference Model enables application software portability at the source code level and
application software and system service interoperability between heterogeneous systems.
Definition of entities and interfaces based on the OSE model can facilitate requirements definition
for designs which have the open and generic characteristics needed.

@ There are three types of entities used in the OSE Model: Application Software, Application
Platform and External Environment. There are two types of interfaces: the Applications Program
Interface and the External Environment Interface.

@ The OSI Reference Model is a Network Services Model. Network Service is only one resource of
many competing resource processes provided by both the POSIX and SGOAA Models. Applications
gain access to POSIX Network Services via the POSIX API Communications Services Interface and
to SGOAA Network Services via the SGOAA Class 5 Interface (Applications Software-to-System
Services Software). In the OSI model, applications gain access to Network Services via an
applications-to-services interface. Interfacés provided by Network Services must be open network
interfaces, protocol independent and provide for network protocol interoperability. The POSIX OSE
reference model focuses on the requirements of application portability and system interoperability
at the source code level by addressing these objectives at the Applications Program Interface (API)
and at the External Environment Interface (EEI). Internal Application Platform Interfaces are not
addressed.

® The OSI model may be mapped into just the communications links of the POSIX OSE model API
and the EEI to define the communications protocols. The SGOAA model may be mapped into the
user, communications, information, and systems services links of the POSIX OSE model to define
the content of all the interfaces. Thus, the three models are complementary. 15

_—

